Marc Melgosa defiende su tesis sobre la gestión de los flujos de tráfico aéreo y de la capacidad
24/03/2023
Marc Melgosa defendió su tesis codirigida por Dr. Xavier Prats y Dr. Andrija Vidosavljevic el 22 de marzo de 2023 en el Campus del Baix Llobregat. La tesis presenta un nuevo concepto operacional que integra la gestión de la demanda y de la capacidad en el mismo problema de optimización, utiliza métricas de complejidad (en lugar del número de llegadas) para medir el tráfico y tiene en cuenta las preferencias de los usuarios del espacio aéreo permitiendo la posibilidad de utilizar trayectorias alternativas para evitar la congestión del espacio aéreo.
La capacidad estimada de los aeropuertos y los sectores del espacio aéreo. Actualmente, las iniciativas de gestión de la demanda y de la capacidad se implementan por separado. Ante una previsión de tráfico, los diferentes proveedores de servicios de navegación aérea asignan sus recursos proporcionando las sectorizaciones del espacio aéreo. Después, el administrador de la red trata las sobrecargas restantes mediante la asignación de retrasos utilizando el algoritmo CASA basado en un principio de ordenación por orden de llegada. A algunos vuelos también se les puede cambiar de ruta o limitar la altitud de crucero para evitar la congestión del espacio aéreo requiriendo de un nuevo plan de vuelo. Así pues, las sectorizaciones elegidas anteriormente pueden no ser óptimas una vez que se implementen las iniciativas de gestión de la demanda. Adicionalmente, la flexibilidad de los usuarios del espacio aéreo es limitada ya que no pueden expresar sus preferencias. Además, la demanda y la capacidad se miden actualmente contando el número de llegadas como proxy de la carga de trabajo del control del tráfico aéreo. Sin embargo, esta métrica no puede evaluar la dificultad de controlar diferentes patrones de tráfico dentro de los sectores lo que conduce al uso de márgenes de capacidad.
Este PhD se centra en superar las limitaciones del sistema de ATFCM actual descritas anteriormente mediante la introducción de métricas de complejidad (en lugar del número de llegadas) para medir la carga de tráfico, la mejor consideración de las preferencias de los usuarios del espacio aéreo permitiendo la posibilidad de la presentación de trayectorias alternativas para evitar la congestión, y la integración holística de la gestión de la demanda y de la capacidad en un mismo problema de optimización.
Primero, se estudia la integración de dos iniciativas de gestión de la capacidad, DAC y FCA, demostrando beneficios cuando dicha integración es dinámica. A continuación, se propone un nuevo concepto operacional donde los usuarios del espacio aéreo tienen la opción de presentar trayectorias alternativas y el administrador de la red es el responsable de la gestión de la demanda (asignación de retrasos y elección de la trayectoria utilizada) y la gestión de la capacidad (selección de la sectorización), considerando una optimización de toda la red. Este concepto operacional se modela con dos modelos de DCB que abordan sólo la gestión de la demanda y tres modelos holísticos donde las medidas de gestión de la demanda y de la capacidad se consideran conjuntamente en el mismo problema de optimización.
Un primer modelo pretende elegir la mejor asignación de trayectoria y retraso por vuelo mientras se analiza la carga de tráfico con el número de llegadas a nivel de volumen de tráfico. Se resuelve un caso de estudio utilizando las regulaciones históricas proporcionando un 76.84% de reducción en el retraso en la llegada si se compara con el sistema actual.
El modelo holístico que utiliza métricas de complejidad y optimiza las sectorizaciones del espacio aéreo escogiendo entre un conjunto de configuraciones disponibles se estudia en detalle. Este modelo se trata con un nuevo método híbrido basado en el recocido simulado y la programación dinámica. En un primer caso de estudio, se compara este nuevo método con el método exacto resuelto con Gurobi proporcionando un mejor rendimiento cuando aumenta la dificultad del problema. En un segundo caso de estudio se realiza un estudio de sensibilidad del parámetro que modela una penalización para diferentes configuraciones consecutivas. Finalmente, se resuelve un escenario a gran escala con el método Híbrido proporcionando menores valores de retraso en llegada y menores costes en la sectorización resultante en comparación con un escenario de referencia que representa las mejores condiciones del sistema actual.
Compartir: